Tuesday, December 11, 2018

Modern Physical Metallurgy and Materials Engineering (6th Edition)


File Size: 8.80 mb

For many years, various editions of Smallman's Modern Physical Metallurgy have served throughout the world as a standard undergraduate textbook on metals and alloys. In 1995, it was rewritten and enlarged to encompass the related subject of materials science and engineering and appeared under the title Metals & Materials: Science, Processes, Applications offering a comprehensive amount of a much wider range of engineering materials. Coverage ranged from pure elements to superalloys, from glasses to engineering ceramics, and from everyday plastics to in situ composites, Amongst other favourable reviews, Professor Bhadeshia of Cambridge University commented: "Given the amount of work that has obviously gone into this book and its extensive comments, it is very attractively priced. It is an excellent book to be recommend strongly for purchase by undergraduates in materials-related subjects, who should benefit greatly by owning a text containing so much knowledge."

The book now includes new chapters on materials for sports equipment (golf, tennis, bicycles, skiing, etc.) and biomaterials (replacement joints, heart valves, tissue repair, etc.) - two of the most exciting and rewarding areas in current materials research and development. As in its predecessor, numerous examples are given of the ways in which knowledge of the relation between fine structure and properties has made it possible to optimise the service behaviour of traditional engineering materials and to develop completely new and exciting classes of materials. Special consideration is given to the crucial processing stage that enables materials to be produced as marketable commodities. Whilst attempting to produce a useful and relatively concise survey of key materials and their interrelationships, the authors have tried to make the subject accessible to a wide range of readers, to provide insights into specialised methods of examination and to convey the excitement of the atmosphere in which new materials are conceived and developed.

1. The structure and bonding of atoms
2. Atomic arrangements in materials
3. Structural phases; their formation and transitions
4. Defects in solids
5. The characterization of materials
6. The physical properties of materials
7. Mechanical behaviour of materials
8. Strengthening and toughening
9. Modern alloy developments
10. Ceramics and glasses
11. Plastics and composites
12. Corrosion and surface engineering
13. Biomaterials
14. Materials for sports
1. SI units
2. Conversion factors, constants and physical
Figure references

Author Details
Professor R. E. Smallman After gaining his PhD in 1953, Professor Smallman spent five years at the Atomic Energy Research Establishment at Harwell, before returning to the University of Birmingham where he became Professor of Physical Metallurgy in 1964 and Feeney Professor and Head of the Department of Physical Metallurgy and Science of Materials in 1969. He subsequently became Head of the amalgamated Department of Metallurgy and Materials (1981), Dean of the Faculty of Science and Engineering, and the first Dean of the newly-created Engineering Faculty in 1985. For five years he was Vice-Principal of the University (1987–92).

R. J. Bishop After working in laboratories of the automobile, forging, tube-drawing and razor blade industries (1944–59), Ray Bishop became a Principal Scientist of the British Coal Utilization Research Association (1959–68), studying superheater-tube corrosion and mechanisms of ash deposition on behalf of boiler manufacturers and the Central Electricity Generating Board. He specialized in combustor simulation of conditions within pulverized-fuel-fired power station boilers and fluidized-bed combustion systems.

Download Drive-1

No comments:

Post a Comment