Modern Experimental Stress Analysis: completing the solution of partially specified problems

File Size: 6.99 Mb

This book is based on the assertion that, in modern stress analysis, constructing the model is constructing the solution—that the model is the solution. But all model representations of real structures must be incomplete; after all, we cannot be completely aware of every material property, every aspect of the loading, and every condition of the environment, for any particular structure. Therefore, as a corollary to the assertion, we posit that a very important role of modern experimental stress analysis is to aid in completing the construction of the model.

What has brought us to this point? On the one hand, there is the phenomenal growth of finite element methods (FEM); because of the quality and versatility of the commercial packages, it seems as though all analyses are now done with FEM. In companies doing product development and in engineering schools, there has been a corresponding diminishing of experimental methods and experimental stress analysis (ESA) in particular. On the other hand, the nature of the problems has changed. In product development, there was a time when ESA provided the solution directly, for example, the stress at a point or the failure load. In research, there was a time when ESA gave insight into the phenomenon, for example, dynamic crack initiation and arrest. What they both had in common is that they attempted to give “the answer”; in short, we identified an unknown and designed an experiment to measure it. Modern problems are far more complex, and the solutions required are not amenable to simple or discrete answers.

1. Finite Element Methods
2. Experimental Methods
3. Inverse Methods
4. Static Problems
5. Transient Problems with Time Data
6. Transient Problems with Space Data
7. Nonlinear Problems

Author Details
"James F. Doyle"
Purdue University, Lafayette, USA

Download Drive-1

You May Also Like These E-Books:-

No comments:

Post a Comment